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fﬂL; n balls are randomly distributed into N cells, so that no cell may

contain more than one ball. This process is repeated m ¢times. In addition,

balls may disappear; such disappearances are independent and identically

Bernoulli distributed. Conditions are given under which the number of empty
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SIGNIFICANCE AND EXPLANATION
Some asymptotic properties of an occupancy model which includes many

classical models as special cases are studied.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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THE DISTRIBUTION OF THE NUMBER OF EMPTY CELLS IN A GENERALIZED
RANDOM ALLOCATION SCHEME"

1 2

Bernard Harris, Morris Marden' and C. J. Park

1, INTRODUCTION

The distribution of the number of empty cells in the following
random allocation process is considered. Let n, N be positive inte-
gers with n < N, Assume that n balls are randomly distributed into
N cells, so that no cell may contain more than onc ball. Then, the

M1,

probahility that each of n specified cells will be occupied is o

This process is repeated m times, so that there are (?‘)m random

allocations of mnm balls among the N cells, In addition, for each
ball, let p, 0 < p <1, be the probability that the ball will not

) "disappear” from the cell. The "disappearances" are assumed to be
stochastically independent for each ball; thus the disappearances con-
stitute a sequence of nm Bernoulli trials.

Several special cases of this problem have previously been con-

sidered . In particular, p =1, n=1 1s the classical occupancy

problem, see [2],[3],[10]. The case p =1, n arbitrary has been

discussed in [4] and [7]. The case 0 <p <1, n=1 is treated in
c' J. Park [5]'
In this paper, we obtain the probability distribution and moments

of the number of empty cells., In section 3, we show that the number of

*
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empty cells may be represented as a sum of independent Bernoulli ran-

dom variahles. This representation permits us to determine conditions

onm, n, p, N such that the number of empty cells is asymptotically
normally distributed.

This random allocation process may be viewed as a filing or

storage process. Objects are randomly assigned to files or storage bins.

From time to time, objects may be missing or have disappeared.




2, _THE PROBABILITY DISTRIBUTION AND THE MOMENTS OF THE NUMBER

OF EMPTY CELLS

Let m,n,N be positive integers with n < N, m sets, each con-
sisting of n balls, are distributed into N cells at random so that
no cell can contain more than one ball from the same set. As each set
{s distributed, the balls that have been placed during the preceding
distributions are left in the cells. Thus, at the end of the process,
cells may contain as many as m balls, In addition, each ball may
“disappear” with common probability 1 - p, 0 < p < 1, These dfsappear-
ances are stochastically independent and thus constitute a sequence of
mn Bernoulli trials,

Let P

m,n,N,p
cells are empty.

(j) be the probability that exactly j of the N

We now establish the following theorem,

Theorem 1.
2 N-
P npl) = (3 <j> z (4%
J+2
Ll A1 M it i Y0 % L TP P ()

Proof. Let Av be the event that the vth cell is empty,
\, = 1.2....’". Then’
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P(A,) = (2)'m[i]§o(ﬁ:})(1-p)‘1"‘ : (2)
For 1 <vy; <v; <N,

(A, ) = (:)""céo M2 G a-p " . (3)
Thus, for 1 < vy < vy < *oe < v <N,

k
PR, 0, neee 0, ) - (2)""[1;0(2:',-‘)(';)(1-p>‘1"‘ . (@)

Thus, using the inclusion-exclusion method, the probability that exactly

j cells are empty is

-m N r
e = ) L EEIOUL QDOO-9T (5)

We can write (5) in the form (1) by letting r = j + 2,
We now deternine the factorial moments of S, the number of

enpty cells.

Theorem 2. The vth factorial moment of S,

VD 2 M™ ) ¢y 3 N=vy vy
B(s™7) = () N [jzo(l-p) (n-j)(j)] . (6)




Proof. From J. Riordan [9], p. 53, from (4), it follows immediately

that
E(S(\))) - (N) ) N -m_ X N=vy v i m (7
= GV LT 0T )
We thus obtain the following.

Corollary. E(S) = N(1 - P}{l)m , (8)

2 _ N-n){N-n-1 n(N-n 2p(n-1)"
OS = N(N-])["—’T}"“'_Tr'l + 2(1'P)N N- + (1'p) NI{N- ]

ST TIPS (8)

Proof. From (7)

-m m
es) = MM (N e Mhoee™ = o -BY

Since

o = £y +els) - (E(s))?

the conclusion follows readily from (6), after some elementary calcula-

tions.

-5.




For some purposes, the following equivalent forms of (9) will

prove useful,

0 = NN-1) 1 - 2L L iy B (11 By (10)

and
2m 2 m
0Z = N2(1- B 0 - R )y Ly

m m 2(N- m
+ N(1 -%"—) -0 -l’Nﬂ) R -ﬁﬁ%ﬁ] ). (1)

From Theorem 2, we readily obtain the following.
Theorem 3. The factorial moment generating function of S is given by
s N onyreny™ R 3 Nery "
¢n(t) = EQ+t)> = T (") (] (-p YDy (12)
r=0 J=0
Note that ¢m(t) is a polynomial in t of degree N. This fact is

exploited in the next section, where the asymptotic distribution of

S 1is obtained. In particular,

¢olt) = (1 )N (13)

and




oy (1) = )"+ ppty”

We now investigate the asymptotic distribution properties of the

number of empty cells,

-7-
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3.  THE ASYMPTOTIC DISTRIBUTION OF THE NUMBER OF EMPTY CELLS

In this section, we determine conditions under which the number of
empty cells (when suitably nomalized) has an asymptotically normal distri-
bution. In order to establish this, a number of prelininary results are

required.

Lerma 1. Let N,n,r be non-negative integers, r < n < N. Then
Ty vy Ner r, N-a
L OQGD = QG5 - (15)
Proof. Since (:) = 0 whenever v < a, we can write
I OO - T MOt
vea vita’‘n-v <0 vita’tn=v’ °

To obtain the conclusion, note that

ST

x=0 (:)

= ex(®y

e~y

where X has the hypergeometric distribution. From B. Harris [1],

p. 105,

MG la), (@)
0 W) Ny T

W t~1"%
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The conclusion follows immediately.

Lemma 2.
: : "
d DY e 0-p7GTHE) 6
o () v=0 )

Proof. The right-hand side of (16) may be written

: N-ry(r ¢ jjr\)Nrr
My T I
VZO _ﬂ:!N;!_ -§ (;)('I)JPJ - i;o( ) p Y;iiJ)(n'V)(V)
() 3=0 "
™

Thus, the coefficient of p‘] is

SR Lasy

v=j N=Vv° v

N
()
From Lerma 1,

Nev’ 'V

38y Nery,ry, Ny 3,ryN=3\, (N
(0T T OGEDOMR = COOEHQ

from which the conclusion follows immediately. Employing the above

lemmas, we can now establish the following theorem.
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and

32 "
e whenever _L + o
1
i

The conclusion is obvious whenever L“.ﬁ.&., r > 0.

If o+~ as N-»=, then

<, = Ne™® + O(Ne™2%)

and

3/2

> whenever 3a - log N+ -=.

.2]-




Proof. From (11), we can write, for o >0,

K, = Ne™)(1-e™ - ape™) + 0(npa) +0 (p*a*)

where a = UL Then, as o + 0,

¢, = N(1-ata?/2) (a3 - ap +ap) + O(Na®) +0(mna).

Then, if p->p #1,

= Na{1-p) + O(Na?)

2
and
K3/2
2 mn
N whenever '7%% + o

N

P p
Similarly, if (1-p) = c(-"%“ﬂ) + c((‘l;“ﬂ) ), 0<p<1l, c¢>0,

then

Ky = Na(l - p) + o(Na(1 - p))

-20-




Theorem 6. V= (S-E(S))/oS has an asymptotically standard normal
distribution as N + =, whenever any of the following conditions are

satisfied.

1. HRao, pap 1 and Bl
N
2. "s0,  (1-p) 0 so that for some ¢ > O,

(-p) = c(®2)” 4 o((@R)’) o< p <1, and

_mp__ .
1 1
JJ-m)

(¢ ¢
3. TR0, (1-p) = (TR +o(BP)), 021, and

5. TP .o and TN g N e

-19.




From (29),

N (m) N
log ¢, (t) = nm log(1-p) + 121 'Iog(t-tj ) = 1Z]log(l+rit)

N = k
= z Z (Tit) (_])k )

i=1 k=1 k
Thus,
K N v
_.b)l- L:_]-). T 0<T S],
vl g5 v i i
and
N
1 v
e/ s<= 1 |1 s NV,
v] vV ogay j
Then
£
ljzl 8,0 gyl 5 S Mo (30)

since the Bj,z do not depend on N,n.,m, or p.

lle now establish the following theorem,

-18-




f(x) = c(x-x])(x-xz)---(x-xN), X}y S X S er S Xy
(m) -1 d i
the representation follows by setting Ty -(tj ) and noting
that £(0) = ¢m(0) =1,

Let «, = Kl(n.N.m.p) be the cumulants of S and let K[V]

be the factorial cumulants of S. That is,
log ¢ (t) = ‘E "[V]tv/v!
m yal
Then
[}
T L Bt

where Bj g are the Stirling numbers of the second kind.
1]

Then, as N>,
V= (s - E(s))/og

s asymptotically distributed by the standard normal distribution

(mean 0, variance unity), whenever

"z/"glz*o. L>2,

-17-




Proof. Let Y be a Bernoulli random variable with P{Y = 1} = 7,

Then the factorial moment generating function of Y fis

Ey((146)") = (141t),

If

where YI’YZ""’YN are mutually independent Bernoulli random variables
with P{Yj =1} = Ty then the factorial moment generating function of
W is

N N
t) = E, {() t)”} = T E, {(1+t YJ} = I (T+1,t), (28
£l E Q1+ o By ) - +14t) )

where 0 < Tj <1, §=1,2,...,N. From Theorem 4, the factorial

moment generating fraction of S may be written
- N (m)
¢m(t) = (1-p) jn](t'tj )» m=20,1,..., (29)
where tgm) are real and -(l-p)"m < t§m> <=1, §=1,2,...,N.

Since every polynomial of deqree N with real roots has a unique

representation of the form

-16-




The zeros of ¢0(t) are t;o) = t£0) Z .. = tﬁo) = .1, The zeros
(1) _ . M .5 0 - 4y/0.

of ¢ (t) are t Teeoaaty no= =1y ty 0 0q = =1/01-p),.cy

tél) = -1/(1-p). Now apply Lemma 3 with y(z) = ¢1(z) obtaining

a=1l,bs= (l-p)']. Then, the zeros of ¢o(t) are real and satisfy

-(1-p)~2 < tgz) -1, §=1.2,...N.

It then follows readily by induction that the zeros of ¢k(t) are

real and satisfy

-(-py K < tgk) <1,  §=1,2,..0N, k=2,3,... .

Theorem 5. For 1 <nsN, Osp=<1l, m21, S has a
representation as the sum of. N mutually independent Bernoulli random
variables. That is, there exist mutually independent Bernoulli random

varfables, Yj = Yj(N.m,p,n), j=1,2,...,N, such that
N
s= 1Y (26)
§=1
and

P{Y, =1} =Y, =1 P{Y =0}, (27)

3 J J

-15-




N

B = ™ g = {z:2 real, -b(]-p)'] <X < -a(l-p)'1}. (25)

p ac0<Y <00 124

Consequently, Cuv) Bp is contained in the interval (21), proving

the Temma.
We now establish the following theorem.

Theorem 4.  lLet

N -m r m
- Ny, r(N Y N-ry(r
tp(t) = 1 () (Jzon P (o)

Let t%m).tgm)....,tﬁm) be the zeros (not necessarily distinct) of

ém(t).Then tgm), j=1,2,...,N are all real and

“(1-p) ™ <t

1A
1
—
v
Cte
t

- ],2,....“;"‘ :0.].000 .

Proof, From (19)»

¢m+](t) = T(¢m(t)); m 0,1,...,

and from (13),

oo(t) = (st)V

-14-




That is, w;(z$1),z£1)....,z£])) = T(w(z*)) is a linear symmetric

function of 2%1),zé])....,z§])). Thus, the condfitions

theorem (M. Marden [5], p. 62) are satisfied. Thus, if
(0) _(0) (0)
L BRLY N

,...,Z

point ¢ in cY such that
*
Mz -oM =0,

that is, one can set z%l) =L, zgl) = C.....z§1) =z
value 0. From (18),

T[(Z*-C)N] = (z*-c)N'"(z*- g-pz*)" = 0.

Thus either z* = and therefore z* is in CY or

and z* s in

B,y = (Z2124(eAn(1-p)7' | < [le-2)? 421V 2(1-p) !

However, Y 1{s real and arbitrary. Hence it is clear

c= M CY = {2:2 real, -b < x < -a}

=00<Y <o

and

-13-

of Walsh's

are points in C,, then there is at least one

and preserve the

* -
2" = ¢(1-p)”"

. (23)

that

(24)




and

] e (a2
¥i(2) = T(w(2)) = ¢ n (z-2, 7). (20)

If the zeros of y(z) are real and satisfy

-b<x <-a, a,b=20,

then the zeros of w](z) are real and satisfy

- 1y ¢ X sa, (21)
Proof. Let
CY = {z:]z 4 (c-iY)| < [(c-a)z+Y2]1/2, c=%(a+b)}. (22)

Clearly -a and -b are on the boundary of the circular region C.
Consequently all zeros of y(z) are in Gy . Llet 2" be a zero of

v(z). Let

L L A IR N e L [Ce? L I G M

-12-




—

n . N r
( I DI e o) 5 (he ( I (-p)%(
j=0 “TJ) r=0-zﬁyg a=0

n

+ N . g T
n DI ] (ﬂ)r‘J)t"J( (1-p)%(
= z —_—— =0 a=0

j=0 N(J)

Nor 7 Jgnyry v
=Zt.zvn<an)a(z“¢wwqﬂq

= = p
r=0 J-o —_(N-)—l_L a=0 n
j M

The conclusion now follows from Lemma 2.

Let
J=o_~i_)___
ME
Then, from Theorem 3, we have that

dpa1 (1) = T(ap(£D), 6o(t) = ()Y,

zZ=x + iysgx,y real. Let

N

v(z) = I (z-za)
a=1

-11-

n
10e(e) = [ T 03Dend o) 1w, o<p<r,

Lemma 3. Extend the domain of T to the complex plane, letting




Theorem 3. The factorial moment generating function of the number
of empty cells ¢m(t) (12) satisfies the following differential-

difference equation,

n :
ey () = (.Zo(-l)j(g)(pt)JoJ pp(t)s m=01,.... (17)
! mE)

r

where Dj = 4td

(1+t)N; hence

Proof. For m=0, ¢0(t)

1

J=

( T 03 oj) (+t)®

3 o(-1)5<?)(pt)j E LIV L PRV St
j=0 M6

N

ety T (1) M ()i (106)0
00

(+t) " (at-pt)™,

in agreement with (14).
Assume that (17) holds for m = 1,2,...,k. Then, from (12),

-10-







